Compiling Uncertainty Away: Solving Conformant Planning Problems using a Classical Planner (Sometimes)

نویسندگان

  • Héctor Palacios
  • Hector Geffner
چکیده

Even under polynomial restrictions on plan length, conformant planning remains a very hard computational problem as plan verification itself can take exponential time. This heavy price cannot be avoided in general although in many cases conformant plans are verifiable efficiently by means of simple forms of disjunctive inference. This raises the question of whether it is possible to identify and use such forms of inference for developing an efficient but incomplete planner capable of solving non-trivial problems quickly. In this work, we show that this is possible by mapping conformant into classical problems that are then solved by an off-the-shelf classical planner. The formulation is sound as the classical plans obtained are all conformant, but it is incomplete as the inverse relation does not always hold. The translation accommodates ‘reasoning by cases’ by means of an ‘split-protectand-merge’ strategy; namely, atoms L/Xi that represent conditional beliefs ‘if Xi then L’ are introduced in the classical encoding, that are combined by suitable actions to yield the literal L when the disjunction X1 ∨ · · · ∨ Xn holds and certain invariants in the plan are verified. Empirical results over a wide variety of problems illustrate the power of the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width

Conformant planning is the problem of finding a sequence of actions for achieving a goal in the presence of uncertainty in the initial state or action effects. The problem has been approached as a path-finding problem in belief space where good belief representations and heuristics are critical for scaling up. In this work, a different formulation is introduced for conformant problems with dete...

متن کامل

Planning Graph Heuristics for Scaling Up Conformant Planning

This paper describes a set of heuristics for efficiently solving conformant planning problems. Conformant planning, as described in this paper extends classical planning to problems where there is uncertainty in the initial state. The motivation for improved heuristic techniques stems from the observation that previous conformant planners used largely uninformed heuristics. We show that the rea...

متن کامل

Compiling Uncertainty Away in Non-Deterministic Conformant Planning

It has been shown recently that deterministic conformant planning problems can be translated into classical problems that can be solved by off-the-shelf classical planners. In this work, we aim to extend this formulation to non-deterministic conformant planning. We start with the well known observation that non-deterministic effects can be eliminated by using hidden conditions that must be intr...

متن کامل

Effective Heuristics and Belief Tracking for Planning with Incomplete Information

Conformant planning can be formulated as a path-finding problem in belief space where the two main challenges are the heuristics to guide the search, and the representation and update of beliefs. In the translation-based approach recently introduced by Palacios and Geffner, the two aspects are handled together by translating conformant problems into classical ones that are solved with classical...

متن کامل

A Translation-Based Approach to Contingent Planning

The problem of planning in the presence of sensing has been addressed in recent years as a nondeterministic search problem in belief space. In this work, we use ideas advanced recently for compiling conformant problems into classical ones for introducing a different approach where contingent problems P are mapped into non-deterministic problems X(P ) in state space. We also identify a contingen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006